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Real-Time Optimization is Pervasive in Energy : Estimation, Management, Control 
Requires Extreme-Scale NLP Solvers: Model Size and Short Time Scales 
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Dynamic Optimization for MPC 
§ Tradi(onal	
  control	
  approximates	
  the	
  
model	
  based	
  on	
  output	
  (mostly)	
  ignoring	
  
its	
  physical	
  structure.	
  	
  

§ High	
  variability	
  in	
  forcing	
  and	
  
nonlinearity	
  requires	
  a	
  physical	
  model-­‐
based	
  approach.	
  	
  

§ Far	
  more	
  computa(onally	
  intensive	
  
boAleneck	
  is	
  op(miza(on	
  problem.	
  



Example DO: 
 
 
 

Off-the-Shelf : Solve to Given Accuracy (Neglect 
Dynamics) 

 
 
Real-Time (Z & A) :   One SQP Iteration  per step 
 
 
 
 
 

Fundamental Limitations of Off-The-Shelf Optimization 



1.  Generalized Equation / “Incomplete Optimization” 
 
2.  Exact Differentiable Penalty Approach for Accuracy and Reduced 

Latency  

3.  Numerical Case Studies 
 
4.  Conclusions and Future Work 
 

Outline of the Talk 



1.Generalized Equation / “Incomplete 
Optimization” 



Context: Parametric NLP 
KKT system for  QP 

Note: Canonical Form Identical to Time-Steping for DVI 

Exact Solution Satisfies:   

From Lipschitz Continuity of strongly regular GE: 

Optimal Solution 

Linearization Point 

QP Solution 

- Strong Regularity Requires SSOC and LICQ 
-  NLP Error is Bounded by LGE Perturbation 
-  One QP solution from exact manifold is second-

order accurate 

MPC as Dynamic Generalized Equation (Z & A) 

wt
* −wt ≤ LΔt 2

 Time linearization of Optimality Conditions: Find    



-  A: LGE is Strongly Regular at ALL               e.g. NLP satisfies LICQ and SOSC everywhere  

But for linearized DO I am never EXACTLY on the manifold: What then?  

Theorem (elucidating an issue posed by Diehl et al.) 

Solve off-manifold time-dependent QP 

Then: For sufficiently small         ,  we can track the manifold stably, solving 1 QP per step  

Moreover: Stability Holds Even if QP Solved t   o             accuracy. Can use iterative methods. 

Much less effort per step and better chances for real-time performance ! 

. 

  

One-QP per step stabilizes 



Need for more features of DO solvers 
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•  One QP per step may still be too much 
•  Moreover I may need also good global and fast local convergence properties as well, 

it is not all about asymptotics!  
•  Sometimes one switch regimes, the optimal point moves far away, and you still want 

to be able to track well. – MPC algorithm must exhibit global convergence and fast 
local convergence (i.e. Newton)! 

•  Also, power grid problems can be huge (US ~ 1 – 100 Billion Variables). Need scalable 
solvers.  



 
2. Exact Differentiable Penalty Approach for 

Accuracy and Reduced Latency  



Solution forms Time-Moving and Non-Smooth Manifold 

 

Technical Problem 

Latency 

Active-Set Change 

Non-Smooth  
Manifold 

-  Challenge is to Track Manifold Accurately (Classical Optimization)  AND Stably (Latency 
Conscious: A good Step, Computer Fast) 

 

 



Technical Problem 

•  Challenge is to Track Manifold Accurately AND Stably (Get Good Step with Minimum Latency) 
 
 
•  This requires NLP Solvers with the Following Features: 

•  A) Classical Optimization Oriented :   
1) Superlinear Convergence (Newton-Based) 
2) Scalable Step Computation  (Iterative Linear Algebra) 

•  B) Latency Conscious:  
3)   Asymptotic Monotonicity of Minor Iterations (Makes Progress in O(N)) 
4)   Active-Set Detection and Warm-Start 

 
 

 

-  Existing Solvers Tend to  Fail at Least One Feature 
-  Interior Point: 4, and to some extent, 2,3 
-  Augmented Lagrangian: 1   
-  SQP: 2 

 



Exact Differentiable Penalty Functions (EDPFs) 
Consider Transformation using Squared Slacks  

Equivalent To: 

Apply DiPillo and Grippo’s Penalty Function DiPillo,Grippo, 1979, Bertsekas, 1982 

Solve NLP Indirectly Through EDPF Problem: 



Exact Differentiable Penalty Functions with 
Bound Constraints 

Advantages 
    - EDPF Differentiable Everywhere 
    - Unconstrained Problem with Box Constraints, scalable, superlinear, warm-start 
    - Makes Progress at Each Iteration (latency) 

Questions 
    - Under What Conditions Do Minimizers of EDPF and NLP Coincide? 
    - How to Deal with Nonconvexity? 

    - Detect and Exploit Negative Curvature 
    - Can We Enable Scalability AND NOT NEED THIRD DERIVATIVE? 
           - First and Second Derivatives 
           - Iterative Linear Algebra 



The big picture   

§  Combine	
  Bertsekas	
  bound	
  
constrained	
  EDPF	
  with	
  Lin-­‐More	
  trust	
  
region.	
  	
  

§  Superlinear	
  convergence	
  w/o	
  
Maratos	
  from	
  EDPF	
  

§  Matrix	
  free	
  from	
  Lin-­‐More	
  

§  Improvement	
  in	
  Order	
  N	
  from	
  EDPF	
  
§  Warm-­‐Start	
  and	
  ac(ve	
  set	
  detec(on	
  

from	
  Lin-­‐More	
  	
  	
  

§  And	
  maybe	
  this	
  will	
  help	
  op(miza(on	
  
proper	
  ….	
  

§  Our	
  contribu(ons:	
  

§  Formalizing	
  bound	
  constrained	
  EDPF	
  
proper(es	
  

§  Using	
  trust-­‐region	
  to	
  get	
  rid	
  of	
  the	
  
third	
  deriva(ve	
  while	
  preserving	
  both	
  
global	
  convergence	
  of	
  EPF	
  and	
  
superlinear	
  convergence	
  of	
  Newton.	
  	
  

§  Demonstra(ng	
  that	
  the	
  approach	
  
scales	
  well.	
  	
  

	
  



Derivatives and Minimizers of EDPF 

In Compact Form 

First  Derivative  

Is KKT Point of EDPF a KKT Point of NLP? 

Theorem:  
Under LICQ and SC there exist           such that KKT Point of EDPF is KKT point of NLP. 

Proof:  

Matrix on LHS is PD For sufficient large      and sufficiently small      . 



High-Order Term Vanishes at KKT Point Because  

Derivatives and Minimizers of EDPF 
Second Derivative 

Third-Order Term 

Is Strict Minimizer of EDPF a Strict Minimizer of NLP? 

Theorem:  
 i)  If KKT Point satisfies SSOC for NLP then there exist           such that it  
     satisfies SSOC of EDPF.    
ii)  If KKT Point does not satisfy SSOC for NLP then there exist            such that this is 
not a strict local minimizer of EDPF.  
 
 Proof: Relies on Analysis of Projected Hessian where       is null-space matrix. 



Derivatives and Minimizers of EDPF 

A “Strong” Dennis-More Condition 

Implication:  
 
   - We can drop third-order terms and derive quasi-Newton algorithms  
      that retain superlinear convergence. 
   - Much easier implementation. 

Exact Hessian 

Approximate Hessian 

Approximate Hessian is Asymptotically Convergent 



Trust-Region Newton 

-  Need to detect and exploit directions of negative curvature 
 
-  Use Trust-Region Newton Framework of Lin and More (TRON) 
 

      1) Determine Activity Using Cauchy Point 

    2) Compute Search Step by Solving Trust-Region QP  using Steihaug’s 
Preconditioned Conjugate Gradient  Approach (PCG) 

    3) Check Progress Over Cauchy Step and Update Trust Region Radius 

-  Approach Converges to Strict Local Minimizers of NLP  Globally and Superlinearly 
-  Requires           to Satisfy Conditions of Previous Theorems 
 



Computational Scalability  
Derivatives 

-  EDPF Hessian Can be Assembled using Hessian and Jacobian Vector Products 
 

Kernel 

Requires 2 Unique Kernels 

PCG 
 
 
 
 
       - Does Not Require Assembling Reduced Hessian 
       - Requires Action of Inverse Preconditioner  
       - Incomplete Cholesky, PARDISO, Algebraic Multigrid 
       - Inertia Detected Externally (Not by Linear Solver) 
 
 



3. Numerical Results 



Numerical Examples 
Algorithmic Behavior  

-   Trust Region Management Critical  -  Line Search Solvers Fail (IPOPT) 
-   High Nonlinearity at Beginning of Search (Third order term induces it) 

Min Eig TR 



Numerical Examples 
Optimal Control Problem 

-  Discretize and Scale Problem Up by Increasing Horizon N 
-  Sparsity of  Augmented System Retained in Hessian of EDPF 
-  Drop Tolerance Incomplete Cholesky of 1e-4  



Numerical Examples 
Scalability 

-  Scalability of Full Cholesky Not Competitive 
-  Incomplete Cholesky Gives High Flexibility 
    Can Specify Drop Tolerance to Reduce Latency 
-  PCG Iterations Scale Well 
-  Largest Problem Has 250,000 Variables 

Incomplete Cholesky Full Cholesky 



Numerical Examples 
Active-Set Identification for the 2500 dimension case 

-  Case 1) Has 173 variables active at solution and initialized with 44  

-  Case 2)  Has 44 variables active at solution and initialized with 173 
 
-  Cauchy Search Efficient at Detecting Activity (Allows for Large Changes Between Iterates) 

-  Number of PCG Iterations Do Not Degrade as Solution Approached (Compare with IP) 



Numerical Examples 
Early Termination on problem with N=100 

-  Run MPC Problem Terminating After 2 Major Iterations and 20 PCG iterations 
-  Reduced Latency by A Factor of 4 (Four)  
-  Convergence to Equilibrium Point  (Warm-Starting Effective) 



4. Conclusions and Future Work 

-  We derived NLP algorithms that enable: 
1)   Superlinear Convergence (Newton-Based) 
2)   Scalable Step Computation (Enable Iterative Linear Algebra) 
3)   Asymptotic Monotonicity of Minor Iterations (Makes Progress) 
4)   Active-Set Detection and Warm-Start 

-  Critical in “Fast” Real-Time Environments 

-  ToDo: 
-  More Robust Implementation (Scaling, Trust-Region Update Rules, Ill-Conditioning) 
-  Alternative Penalty Functions Requiring Only One Parameter 
-  Preconditioning  
-  Exploiting Special Structures 
-  Comparison with Other NLP Solvers 

-  Proposed Approach : EDPF + Trust-Region Newton + PCG 
1) Newton-Based in Primal/Dual Space with Convergent Approximate Hessian 
2) Steihaug’s PCG to Detect and Exploit Negative Curvatur 
3) PCG Improvement on EDPF Function 
4) Cauchy  




